Transonic Airfoil Shape Optimization Using Variable-Resolution Models and Pressure Distribution Alignment

نویسندگان

  • Slawomir Koziel
  • Leifur Leifsson
چکیده

A computationally efficient and robust methodology for transonic airfoil design is presented. The approach replaces the direct optimization of an accurate, but computationally expensive, high-fidelity airfoil model by an iterative re-optimization of a corrected low-fidelity model. The low-fidelity model is based on the same governing fluid flow equations as the high-fidelity one, but uses coarser discretization and relaxed convergence criteria. The shape-preserving response prediction technique is utilized to align the pressure distribution of the low-fidelity model with that of the high-fidelity model. Our method is applied to constrained airfoil lift maximization and drag minimization in twodimensional inviscid transonic flow. The optimized designs are obtained at substantially lower computational cost when compared to the direct high-fidelity model optimization. The savings are 85 to over 90 percent depending on the test case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Shape Parameterization on the Efficiency of Evolutionary Design Optimization for Viscous Transonic Airfoils

The effect of airfoil shape parameterization on optimum design and its influence on the convergence of the evolutionary optimization process is presented. Three popular airfoil parametric methods including PARSEC, Sobieczky and B-Spline (Bezier curve) are studied and their efficiency and results are compared with those of a new method. The new method takes into consideration the characteristics...

متن کامل

Transonic Airfoil Shape Optimization in Preliminary Design Environment

A modified profile optimization method using a smoothest shape modification strategy (POSSEM) is developed for airfoil shape optimization in a preliminary design environment. POSSEM is formulated to overcome two technical difficulties frequently encountered when conducting multipoint airfoil optimization within a high-resolution design space: the generation of undesirable optimal airfoil shapes...

متن کامل

Optimization for Airfoil Design

A significant challenge to the application of evolutionary multiobjective optimization (EMO) for transonic airfoil design is the often excessive number of computational fluid dynamic (CFD) simulations required to ensure convergence. In this study, a multiobjective particle swarm optimization (MOPSO) framework is introduced, which incorporates designer preferences to provide further guidance in ...

متن کامل

Simulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition

A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...

متن کامل

Transonic Turbulent Flow Simulation using Pressure-Based Method and Normalized Variable Diagram

A pressure-based implicit procedure to solve the Euler and Navier-Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is described. The boundedness criteria for this procedure are determined from Normalized Variable diagram (NVD) scheme.The procedure incorporates the ε−k eddy-viscosity turbulence model. The algorithm is tested for inviscid and turbulent transonic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011